Inhibition of human sputum elastase by substituted 2-pyrones

J Med Chem. 1987 Jun;30(6):1017-23. doi: 10.1021/jm00389a010.

Abstract

Nineteen 4-hydroxy- and 4-methoxy-2-pyrones related to elasnin (I) have been assayed for in vitro inhibition of human sputum elastase (HSE), porcine pancreatic elastase, alpha-chymotrypsin, and trypsin. Inhibition is reported as Ki and Ki'; percentage inhibition was dependent on [S] in a number of cases, making it unsuitable as a measure of relative inhibition. The 3-(1-oxoalkyl)-4-hydroxy-6-alkyl-2-pyrones were found to be most effective, the octyl homologue 11 being the most potent inhibitor (Ki = 4.6 microM, 30 times better than the lead compound). A further reduction in inhibition was observed when the hitherto hydrophobic 6-substituent was substituted by a branched functionality of hydrophilic nature. Conversely, methylation of the 4-hydroxy group of the 6-alkyl-2-pyrones increased inhibitory activity. The mechanism of inhibition varied from pure noncompetitive to mixed type to uncompetitive and was found to be dependent on the pattern of substitution. We believe that the 4-hydroxy-2-pyrone binds to the S4 subsite, with the 6-substituent extending across the S4-S1 subsites and the 3-substituent occupying the S5 subsite. The length of the inhibitor binding region was calculated to be approximately 24 A. None of the hydrophobic compounds were found to have any appreciable inhibition (less than 10%) with porcine pancreatic elastase, bovine alpha-chymotrypsin, and bovine trypsin when tested at the limit of their solubility. The hydrophilic compounds were nonspecific, inhibiting all four enzymes. Dialysis was used to show that the interaction is fully reversible.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Kinetics
  • Pancreatic Elastase / antagonists & inhibitors*
  • Pyrans / pharmacology*
  • Pyrones / pharmacology*
  • Sputum / enzymology*
  • Structure-Activity Relationship

Substances

  • Pyrans
  • Pyrones
  • Pancreatic Elastase